WRITTEN HOMEWORK \#3, DUE JAN 27, 2010

(1) Let D be the circle with center at $(0,2)$ and radius 2. Evaluate the double integral

$$
\iint_{D} y d A .
$$

Hint: Do not try to write polar inequalities which define D. Instead, begin by making a change of variables, from y to $y-2$, which translates the center of the circle to the origin. If we call this new disc D^{\prime}, then we have

$$
\iint_{D^{\prime}}(y+2) d A=\iint_{D} y d A .
$$

(Convince yourself that this equation is true by thinking about the volumes of the solids which lie under the graphs of $z=y+2, z=y$ over D^{\prime}, D respectively.)
(2) (Chapter 16.4, \#14) Let D be the region in the first quadrant between the graphs of $x^{2}+y^{2}=4, x^{2}+y^{2}=2 x$. Evaluate

$$
\iint_{D} x d A .
$$

(Hint: Do not try to write polar inequalities for D. Instead, express the double integral you want to evaluate as a difference of double integrals over two different regions. You might want to think about the proceeding problem to help you evaluate one of those integrals.)
(3) (Chapter 16.4, \#25) Find the volume above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=1$.
(4) (Chapter 16.5, \#12) A lamina occupies the part of the disc $x^{2}+y^{2} \leq 1$ which lies in the first quadrant. Find the center of mass of the lamina if the density of the lamina at a given point is proportional to the square of the distance of that point from the origin.
(5) (Chapter 16.5, \#18) For the same lamina as 16.5.12, find the moments of inertia I_{x}, I_{y}, I_{0}. (The moment I_{0} is the moment of inertia about the origin, and is equal to $I_{x}+I_{y}$.) You should assume that the density function is given by $\rho(x, y)=x^{2}+y^{2}$.

